Wafer / Lug Butterfly Valves

Butterfly Valves

Section 1: Before You Start

This section explains:

- Base Safety Procedures
- Protection Guidelines
- Storage Guidelines
- Handling Guidelines

Installation, adjustment, putting into service, use, assembly, disassembly and maintenance of the butterfly valve must be performed by qualified personnel.

WARNING!

Nonobservance of the safety instructions may lead to personal injury and danger for both the environment and the valve itself. Nonobservance of these safety instructions will also forfeit the user's warranty

1.1 Base Safety Procedures

- -Personnel making any adjustment to the valves must utilize suitable equipment. All required personal protection means must be worn.
- Installation and handling of the valves must only be done by personnel that is trained in all aspects of manual and mechanical handling techniques.
- Ensure that valve pressure/temperature limitations marked on the valves tagplate are within the service conditions.

1.2 Protection

Proval butterfly valves are delivered with protection in accordance with the Proval Engineering Instructions, to protect the valve from damaging. Wrapping and/or covers must be left in place until installation of the valve.

1.3 Storage

Storage must be off the ground in a clean, dry and dark indoor area.

1.4 Handling

To prevent damage during handling, the valves must be lifted by hand or using appropriate lifting equipment. The valves must be protected from external events e.g. bumps, hitting and vibrations during transport. Any flange protection needs to be removed before the valve is mounted in the pipeline. Lift the valve with great care from the transport package (crate, pallet). While handling or installing the valve, ensure that no damage occurs to the valve, the pneumatic/electrical or hydraulic actuator or other instruments.

Butterfly Valves

Section 2: Introduction

2.1 Identification

The closing element in the butterfly valves is a rotating shaft that is placed on a vertical axis. The sealing is provided between the metal flap and the elastic or plastic sealing elements covering the inside of the body. The sealing element also serves as a flange seal between the valve and the pipe. Advantages of such valves are; low pressure loss, easy opening and closing, good sealing, light vveight and small footprint.

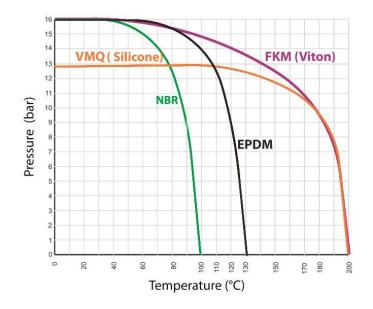
2.1.1 Superiorities of Proval Butterfly Valves

- Flow indication marked, ISO standard valve rotating shaft
- Easy removable, anti blow-out plate
- Name plates includes all valve material and usage data incuding valve serial number
- · Long neck for easy insulation,
- PTFE / Bronze bushing provides low torque and longer seat life by centering the disc and avoids leakage from stem due to non-centric rotation
- Integral o-ring system on seat avoid the leakage from stem
- 2 Pc shaft construction disc provides higher flow rates (kv) and lower pressure loss in pipeline
- Special groove on body provides less torque figures in operation and improves the life cycle of seat
- O-ring to ensure 100% leak free operation
- Easy removable lower cap provides easy dismantling of the valve to replace any defected parts on maintenance
- According to ISO 5211 direct mount ISO pad
- Upper stem bushing
- EN1092 PN10, PN16 ANSI 125/150 and BS10 Table-D, Table-E suitable flange holes

2.1.2 Application Areas

- Heating, ventilating and air conditioning systems
- Water treatment and distributing systems
- Mining industry
- · Shipbuilding and drilling plant
- Food and chemistry industries
- Fire extinguisher systems
- Water, sea water, dust, gas, wastewater and air

Butterfly Valves


2.1.3 Control Types

- Hand operated
- Reducer
- Single Action Pneumatic Actuator
- Double Acting Pneumatic Actuator
- With Electric Actuator / On-Off

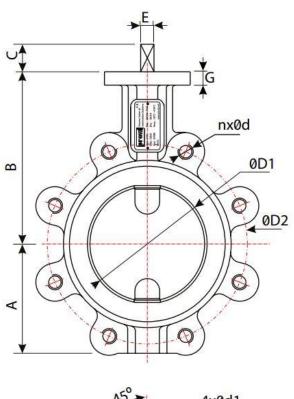
2.2 Technical Data

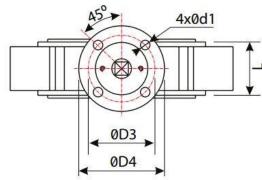
	EN 558 Series 20				
Davies Chandont	ISO5752 Series 20				
Design Standart	API609 Table 1				
	BS5155 Series 4				
Flange Drilling	En 1092 PN 6/10/16				
	ANSI B 16.5 Class 150				
Mounting Flange	ISO5211				
	EN12266-1/2				
Tooting Stondont	ISO 598 Table 5				
Testing Standart	ISO5280, Category 3				
	ANSI B16-104, Class VI				
Sizes	DN 25 – DN 600				
Pressure Rating	Max 16 Bar				
Working Temperature	-30 °C / +200 °C				
· · · · · · · · · · · · · · · · · · ·					

2.2.1 Pressure - Temperature Diagram

Butterfly Valves

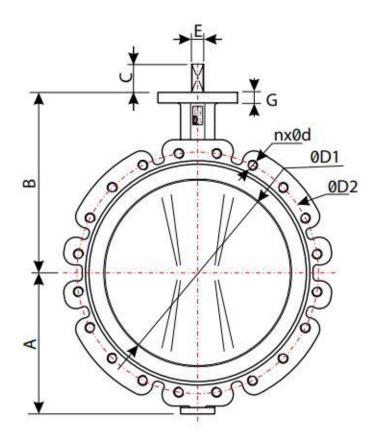
2.3 Material List

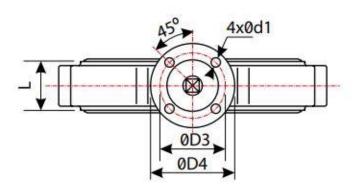

No.	Part Name	Material					
		Epoxy Coated GG25 Cast Iron					
1	Dody	Epoxy Coated GGG40 Ductile Iron					
1	Body	A216 WCB					
		AISI316 Stainless Steel					
		EPDM (-30 °C / +130 °C)					
		NBR (-20 °C / +100 °C)					
2	Seat	Silicone (-30 °C / +200 °C)					
		Viton (-15 °C / +200 °C)					
		NR / SBR (-20 °C / +80 °C)					
		AISI316 Stainless Steel					
3	Disc	Rilsan Caoted GGG40 Ductile Iron					
3	DISC	Alu-Bronze					
		HALAR / ETFE Lined AISI316 SS.					
4/5/6/7/8	Bushing	Bronz / PTFE					
9	Upper Stem	AISI420 Stainless Steel					
9	оррег зтепт	AISI316 Stainless Steel					
	AISI420 Stainless Steel						
10	Lower Stem	AISI316 Stainless Steel					
		AISI304 Stainless Steel					
11	Сар	Carbon Steel					
12	Sealing Seat	Brass					
13	Stoper	Carbon Steel					
14	Screw	Stainless Steel					
15/16	O-Ring	NBR/Viton					



Butterfly Valves

2.4 Dimension

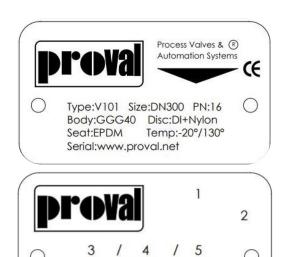




Ölçü	do	ØD2 117		211	do.		nxØd		nxØd		nxØd							_						45
(DN)	ØD1	PN10	PN16	#150	18052	ØD4	PN10	PN16	#150	4xØd1	Α	В	C		E	G	M	N	S	Р	ØR			
50	51,2	125	125	120,6	50	65	4x16	4x16	4x5/8"UNC	7	63	126	16	43	9	13	180	33	84	54	140			
65	65,6	145	145	139,7	50	65	4x16	4x16	4x5/8"UNC	7	69	133	16	46	9	13	180	33	84	54	140			
80	80	160	160	152,4	50	65	4x16	4x16	4x5/8"UNC	7	86	152	16	46	9	13	180	33	84	54	140			
100	102,2	180	180	190,5	70	90	8x16	8x16	8x5/8"UNC	10	106	170	19	52	11	14	284	33	84	54	160			
125	125,6	210	210	215,9	70	90	8x16	8x16	8x3/4"UNC	10	115	181	25	6	14	14	284	33	124	67	160			
150	150,6	240	240	241,3	70	90	8x20	8x20	8x3/4"UNC	10	128	196	25	56	14	14	284	33	124	67	160			
200	200,4	295	295	298,4	102	125	8x20	12x20	8x3/4"UNC	12	160	138	30	60	17	14	350	45	124	67	250			
250	249	350	355	361,9	102	125	12x20	12x24	12x7/8"UNC	12	190	258	39	68	22	14	350	45	157	73	300			
300	299,2	400	410	431,8	102	125	12x20	12x24	12x7/8"UNC	12	235	300	39	78	22	20	350	45	157	73	300			

Butterfly Valves

DN	A	В	н	E	G		P	S	ØR		ØD2		ØD4	(ØD3)	4-	nxØd			
DN	A	D		Ē	G	Ĺ	,	3	Øκ	PN10	PN16	#150	у о4	1Ø)	ØD1	PN10	PN16	#150	
350	260	310	40	27	22	78	97	201	300	460	470	476	150	125	4-14	26x30	26x24	12x1 1/8 UNC	
400	315	340	40	27	23	102	105	230	300	515	525	540	175	140	4-18	16x24	16x27	16x1 1/8 UNC	
450	330	375	40	36	25	114	110	230	400	565	585	578	175	140	4-18	20x24	20x27	16x1 1/4 UNC	
500	348	450	40	36	27	127	110	23	400	620	650	635	175	140	4-18	20x24	20x30	20x1 1/4 UNC	
600	438	500	50	46	27	154	124	301	400	725	770	749	210	165	4-23	20x27	20x33	20x1 3/8 UNC	


Butterfly Valves

2.5 Torque Values

DN	Torque (Nm)							
	PN10	PN16						
50	10	12						
65	12	15						
80	26	40						
100	24	44						
125	80	85						
150	60	90						
200	130	140						
250	300	350						
300	310	350						
350	550	625						
400	755	846						
450	1012	1131						
500	1350	1431						
600	2111	2301						
700	3272	3599						
800	4308	4739						
900	5257	5783						
1000	8920	9818						
1200	12555	13811						

2.6 Marking

6

8

10

- 2 CE Declaration
- 3 Valve Type
- 4 Valve Size
- 5 Valve Working Pressure
- 6 Valve Body Material
- 7 Valve Disc Material
- 8 Valve Seat Material
- 9 Valve Working Temperature
- 10 Valve Serial Number

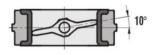
7

9

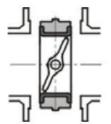
Butterfly Valves

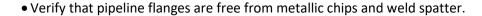
Section 3: Installation

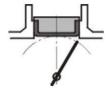
3.1 Visual Valve Inspection


- Confirm that the materials of construction listed on the valve are appropriate for the service intended and are as specified.
- Check if valve and actuator are not damaged during transport or handling

3.2 Before Assembly / Installation Conditions

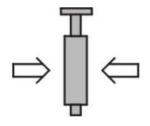


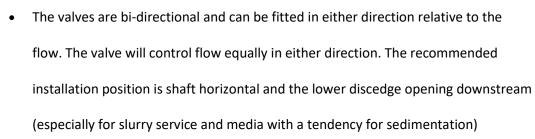

- The working pressure and ambient temperature of the line must be suitable.
- The line must be depressurized before installing the valve
- Ensure that valve materials are compatible with the pipeline fluid.

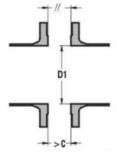


Inspect the valve to be certain the waterway is free from dirt and foreign matter.
 Be certain the adjoining pipeline is free from any foreign material such as rust and pipe scale or welding slag that could damage the seat and disc.

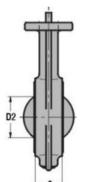
• To prevent damage to the disc and seat during installation, the valve disc must be slightly open but not extending beyond the valve liner face Positioningthe disc in this "almost closed" position will reduce seat interference and initial torque build-up during valve installation.



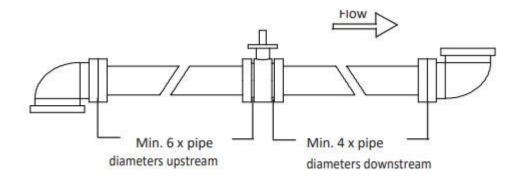



- Verify that pipeline flanges are located on the same centreline and are parallel
- Verify that nothing hinders the complete moving of the disc during opening or closing, in particular at the internal weld seams or at the pipe ends.

Butterfly Valves



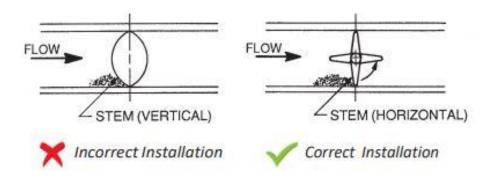
- Verify that inside diameter of pipeline flange is in accordance withthe minimum and maximum diameters given by the manufacturer.
- Adjacent piping must be positioned so that minimal piping stresses are transmitted to the valve flanges during or after installation

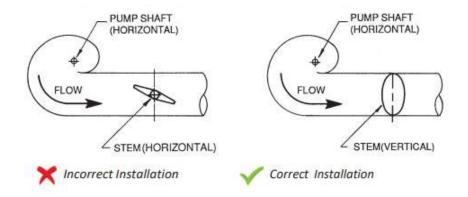


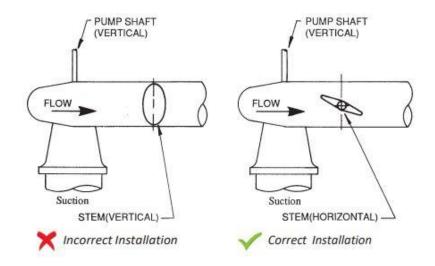
- Check matching of flange drilling pattern of valve and pipe flange before assembly.
 The use of flange-gaskets is not allowed since it might damage the valve. Use flange bolting in accordance with appropriate standard.
- Mating flange faces must be in good condition and free of dirt and/or inclusions.
 Both pipe insides must be well cleaned before installing the valve.

3.3 Installation Conditions

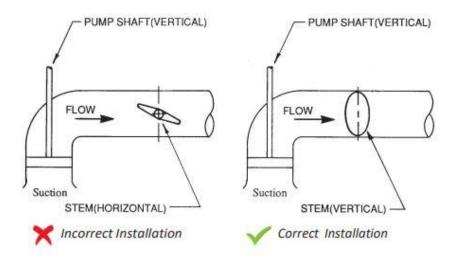
The valves must not be installed close to curves!

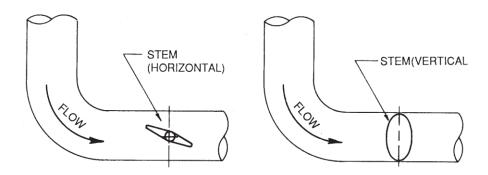

Consideration must be given to the location of the valves in the piping system. The valve must not be placed too close to other valves, elbows, etc. as it is perfor- mance may be affected. It is recommended that the valve have a minimum of six pipe diameters upstream (see below figure) and four pipe diameters downstream between it and other valves, elbows, etc. in the piping system.


Butterfly Valves

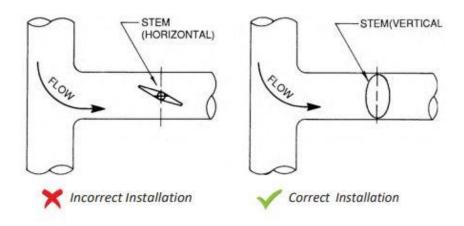

2 Slurry Service or Sedimentation

- 3 Butterfly Valves Located at the Discharge of a Pump
- Centrifugal Pump pump shaft Horizotal and stem horizontal

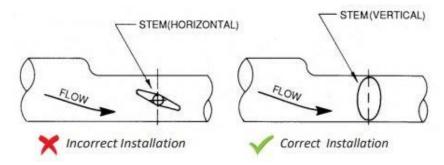

• Centrifugal Pump - pump shaft vertical and stem horizontal

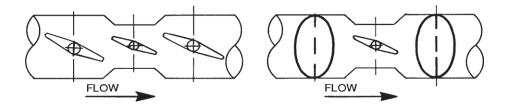

Axial Pump – pump shaft vertical and stem vertical

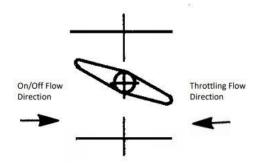
Butterfly Valves



- 4 Butterfly Valves Located Downstream of a Bend or Pipe Reduce
- Bend


T line


Butterfly Valves


Pipe Installation

• Butterfly Valves in Combination for Control/Isolation Applications

Flow Direction of On/Off and Throttling Control Butetrfly Valves

3.4 List of tools

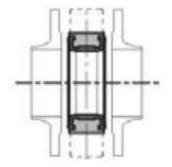
- Pneumatic screwing machine
- Open ended spanner
- Ring spanner
- Boxspanner
- Screwdrivers
- Hammer
- Wedges
- Crow bar
- Silicone grease if authorized

Butterfly Valves

3.5 Assembly

WARNING!

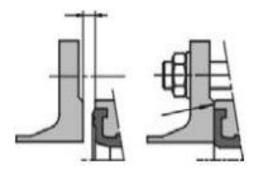
It is the responsibility of the valve user -and not the valve manufacturer- to ensure that the pipeline system has been built professionally and the valve has been properly installed.


Be sure the line is depressurized and drained.

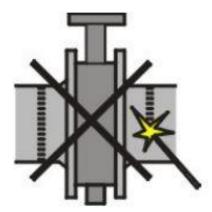

1- Insert valve between pipeflanges and center using several tie-rods.

2- With the disc in near-closed position, center each mating flange with the valve body.

Make sure you are able to turn the disc carefully to a more closed/open position to prevent the discedge from touching the adjacent flanges while positioning the valve.


Butterfly Valves

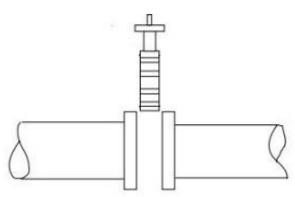
3- Screw up progressively the nuts until metal to metal contact is achieved between the valve body and pipeline


flanges, by making sure the good centering of the body compared with the flange is maintained.

(Use the flange-valve-flange assembly for fit-up and centering to the pipe

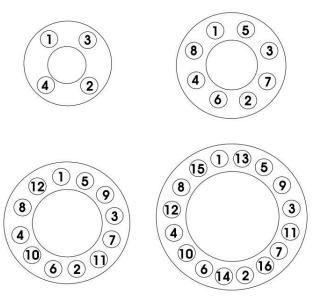
4- Tack-weld the flanges to the pipe

Do not finish-weld the flanges to the pipe with the valve bolted between the flanges as this will result to serious heat-damage to the composite body and the flange sealing rubber O-ring.



- 5- Remove the boltings and remove the valve from between the flanges.
- 6- Finish-weld the flanges to the pipe and allow the flanges to cool completely

Butterfly Valves


7- Spread the pipe flanges apart enough to allow the valve body to be located between the flanges withoutctually contacting the flange surface.

- 8- Insert the valve between the flanges
- 9- Tighten the flange bolts hand tight.
- 10- Slowly close and open the valve to check for adequate disc clearance
- 11- Using the sequence shown in Figure, tighten the flange bolts

Recommended torques (Nm) for flange bolting.

Do not exceed the mentioned bolting torques shown below table, as this can lead to overloading of the body.

DN	PN 10	PN 16
40	40	40
50	40	40
65	40	40
80	50	50
100	50	55
125	50	60
150	50	65
200	60	75
150	75	100
300	90	150
350	100	165
400	100	165
450	175	270
500	175	270
600	300	340

Butterfly Valves

3.6 Commissioning/Decommissioning

3.6.1 Actuated Valves

- Electrical cables may only be connected by qualified personnel.
- The applicable electrical regulations (e.g. IEC and national standards), also for equipment in hazardous locations, must be observed. All electrical equipment such as actuator, switchboard, magnetic valve drive, limit switch etc. must be installed in floodproof dry locations. Voltage and frequency must match the valves stated on the identity plate.

3.6.2 Commissioning

- Prior to commissioning the valve, the pressure, temperature and material data stated on the valve must be compared to the actual operating conditions in the piping system to check whether the valve can withstand the loads occurring in the system.
- Possible pressure surges (water hammer) must not be exceed the highest admissible pressure. Adequate
 precautions must be taken. In new pipe systems and especially after repair work, the system must be flushed
 with the valves fully open to remove solids, e.g. weld beads, which may damage the seats.
- The position of the disc is indicated by the pointer of the actuator or by handle lever. The valves are closed by turning in the clockwise direction (top view) and opened in the counterclockwise direction.
- Before commissioning, the shut-off-function of the valves must be checked by repeated opening and closing.
- Adjustable end stops and torque limiter of actuators have been adjusted in factory.

3.6.3 Decommissioning

During extended shutdown periods, liquids liable to change their condition due to polymerization,
 crystallization, solidification etc. must be drained from the piping system. If necessary, the piping system
 must be flushed with the valves fully open.

Butterfly Valves

proval

3.7 Butterfly Valve Disassembly Instructions

- 1. Position valve flat with the disc (3) in the closed position.
- 2. Unscrew and remove the Stopper plate (13) from the body.
- 3. Remove the upper stem (9) from the disc.
- 4. Unscrew and remove the cap 11) from body. Remove the o-ring (16).
- 5. Remove the lower Stem (10) from disc.
- 6. Remove the valve disc (3) from the body making sure not to damage the seat or disc sealing edge.
- 7. Seat (2) can be removed with hand.
- 8. Remove shaft bushings (4,5,6,7,8) as required.

3.8 Butterfly Valve Assembly Instructions

- 1. Clean all parts, inspect for defects.
- 2. Apply small amounts of silicone Grease to inside body and upper and lower shaft holes.
- 3. Insert the shaft bushings (4,5,6,7,8) into the body (1) being careful not to allow intrusion into the body seat bore.
- 4. Install the seat (2) into the body, making sure the shaft holes in the seat line up with the body.
- 5. Completely coat the inside surfaces of the seat with silicon Grease. Push the disc (3) into the seat in the open position. Line up the shaft holes of the disc as close as possible with the shaft holes in the seat body.
- 6. Insert the lower stem (10) through the body using a twisting motion to align the keyway parallel with the disc.
- 7. Insert the upper stem (9) through the body using a twisting motion to align the keyway paralel with the disc.
- 8. Insert the stopper plate (13) through the upper stem then screw the body.
- 9. Insert the o-ring(12) and cap (11) then screw the body.

Butterfly Valves

Section 4: Maintanance

WARNING!

Depressurize and, if necessary in case of dangerous fluids, drain the line and flush with appropriate cleaning fluid before starting any maintenance. Failure to do so may cause serious personal injury and/or equipment damage. Before disassembling the valve, ensure the valve has been decontaminated correctly from any harmful gasses or liquids and that it is within a safe temperature range for handling. Personnel making any adjustments to the valves must utilize suitable equipment. All required personal protection means must be worn. Only personnel trained in all aspects of manual and mechanical handling techniques must carry out handling of the valves.

Periodic preventative maintenance practices are recommended for all BF Series valves.

- 1. Operate the valve from full open to full closed to assure operability.
- 2. Check flange bolting for evidence of loosening and correct as needed.
- 3. Inspect the valve and surronding area for previous or existing leakage at flat faced or shaft connections.
- 4. Check piping and/or wiring to actuators and related equipment for looseness and correct as needed.

4.1 Valve Removal from Piping and Actuator Disconnecting

- Please check what is the relevant spare kit. Place the disc at 10 ° opening.
- The entire valve must be unpressurized and must have cooled down sufficiently so that the temperature of the medium is lower than 60 ° C, to prevent scalding
- Opening pressurized valves will cause danger to life and limb! If toxic or highly flammable substances or liquids whose residues may cause corrosion by interaction with the air humidity were handled by the valve, then the valve must be drained and flushed or vented. If necessary, wear safety clothing and a face guard/mask. Depending on the installation position, any liquid remaining in the valve may have to be removed.
- Prior to possible transport, the valves must be flushed and drained carefully. If you have any questions please contact your Sales Office.

WARNING!

If actuators powered by an external source of energy (electric, pneumatic, hydraulic) need to be removed from the valves or dismantled, the energy supply must be shut down prior to starting any repair work.

Butterfly Valves

- 1- Remove the valve from the piping with its actuator. **Do not damage the liner during removal the valve from the pipe.**
- 2- Therefore, pull apart the pipe flanges to allow sufficient clearance.
- 3- Identify the mounting position of the actuator.
- 4- Disconnect the actuator and take care of all bolting parts.

4.2 Troubleshooting Guide

PROBLEM	PROBLEM CAUSE	RECTIFICATION					
Noise occurring	Valve running above capacity	Check operating conditions and design features. Change the valve mounting location or replace the valve with a valve type suitable for the place of use.					
	Incorrect mounting. (Valve too close to a reducer, elbow, check valve, etc.)	Change the mounting position.					
Valve will not	The electric actuator is not working properly.	Check actuator electrical connection and settings.					
completely close	There is dirt in the valve	Clean the valve to remove the dirt.					
	Foreign material is trapped inside the valve.	Remove foreign material by backwashing or removing the valve.					
Valve has a	Valve not fully closed	Turn the valve to the fully closed position by checking the mechanical position indicator.					
leaking.	There is dirt in the valve	Turn it on and off to remove the dirt and flush the valve with the valve open.					
	The sealing ring is worn or damaged.	Replace the sealing ring.					
Torque is high	Foreign material accumulation on the body seat. (lime, sand, etc.)	Backwash the valve or manually clean the foreign material					
	Dry line, dry sealing ring.	Apply grease or silicone to the body seat and sealing ring.					
There is a leak at the flange	The flange connection between the body	Check the body-flange connections, tighten as necessary. If the leak cannot be fixed by tightening the flanges:					
connection in the pipeline.	and the pipeline is not sealed.	Ensure pipeline flanges are flush and coplanar and/or replace body gasket.					
	Bottom flange bolts loose	Check bottom flange bolts, tighten if necessary.					
There is a leak in the lower flange gasket.	Spiral winded gasket damaged	Replace spiral winded gasket.					
The valve does not work efficiently.	Insufficient air supply.	Increase air supply pressure and/or flow.					
emcientry.	Actuator/stem adapter not aligned	Disassemble and realign the actuator.					

For further technical support please contact the factory or your local representative,

TR Sales Office: S.Ilknur Keles Sokak No: 7, Kozyatagi Mah. Kadikoy 34742, Istanbul-Turkiye

Tel: +90 216 420 00 74 - e-mail: info@proval.net

TR Facrory : KOBI OSB, 1 Cad 32 Sok No:10 Dilovasi 41480, Kocaeli -Turkiye

Tel: +90 262 728 14 74 - e-mail: info@proval.net